강화학습1 [모델 선택하기] 머신러닝(지도학습,비지도학습,강화학습)/딥러닝 데이터 분석을 할 때, 가장 먼저 생각해야 하는 것이 분석의 목적과 목표, 그리고 그를 위한 변수와 모델을 설정하는 것이다. 여기서 모델을 정한다는 것은 목표를 도출하기 위해 머신러닝을 할지 딥러닝을 적용할지 그리고 머신러닝을 한다면 지도학습/비지도학습/강화학습 중 어떤 방식 선택할 것인지를 고민해 봐야 한다. 목표가 같다고 해도 적용하는 방법에 따라 결과들이 다르게 나올 수 있기 때문이다. 1. 머신러닝 데이터의 양이 적고 주로 정형데이터이며, 분석 목적과 목표 도출을 위해 파생변수를 도출해야 하며다양한 파라미터를 조정하여 성능평가를 할 수 있다. 1) 지도학습 조건) 지도학습은 입력데이터(이하 'x'데이터)와 출력데이터(y, 이하 라벨)가 있다. 목표) 라벨이 없는 신규 'x'데이터에 대하여 라벨값을.. 2018. 7. 19. 이전 1 다음 반응형